The sparkers, too, gained some ammunition, when scientists such as John Eccles discovered that in addition to the big action potentials that zip down the axon as the nerve sends its signals, there is a slower, smaller one made by incoming signals called a synaptic potential. Eccles realized that these synaptic potentials are the key to Sherrington's 'integrative action'. The nerve cell is bombarded all the time by waves of synaptic potentials through its dendrites - some excitors, some inhibitors. When excitors outbuzz inhibitors, an action potential fires off along the axon.
But just how do signals cross the synapse? Eccles was fervently on the sparks side, Dale was a real souper, and they almost had a punch-up over it at one conference. But as the Second World War got under way, Eccles went to work in the safety of Australia with a Jewish refugee from Germany named Bernard Katz and an Austrian refugee named Stephen Kuffler. Having started on the sparky side, first Katz and Kuffler, and then Eccles flipped over to become soupers as the evidence mounted.
related articles:
mapping nervous system Find Gap! Building Nerve Circuits Generating Nerve Signals Acting on Impulses Voltage Regulator Crossing the Gap Sparks Fly Chemical Communication Brain-Enhancing Chemicals Mind Matters
Wednesday, March 24, 2010
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment